Geometry of Fourfolds with an Admissible K3 Subcategory

Laura Pertusi

Dipartimento di Matematica F. Enriques, Università degli Studi di Milano Advisor: Paolo Stellari

Setting

A K3 category is a triangulated category whose Serre functor is the shift $(-)[2]$ and with the same Hochschild cohomology of a K3 surface. Cubic fourfolds and Gushel-Mukai fourfolds have a semiorthogonal decomposition of their derived category of coherent sheaves given by exceptional objects and an admissible K3 category. This allows us to study:

- Fourier-Mukai partners of cubic fourfolds;
- the double EPW sextic associated to a GM fourfold as a moduli space of twisted sheaves on a K3 surface.
Motivation: K3 categories simplify the study of moduli problems over cubic or GM fourfolds.

Fourier-Mukai partners of cubic fourfolds

A cubic fourfold X is a smooth cubic hypersurface in $\mathbb{P}_{\mathbb{C}}^{5}$. Semiorthogonal decomposition

$$
\mathrm{D}^{\mathrm{b}}(X)=\left\langle\mathcal{A}_{X}, \mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)\right\rangle
$$

where \mathcal{A}_{X} is a K3 category (Kuznetsov).
Definition: A cubic fourfold X^{\prime} is a FM partner of X if there is an equivalence $\mathcal{A}_{X} \xrightarrow{\rightarrow} \mathcal{A}_{X^{\prime}}$ of Fourier-Mukai type, i.e. there exists $K \in \mathrm{D}^{\mathrm{b}}\left(X \times X^{\prime}\right)$ such that
$\Phi: \mathrm{D}^{\mathrm{b}}(X) \rightarrow \mathcal{A}_{X} \xrightarrow{\sim} \mathcal{A}_{X^{\prime}} \rightarrow \mathrm{D}^{\mathrm{b}}\left(X^{\prime}\right)$

$$
\Phi(-) \cong \mathrm{R} p_{X^{\prime} *}\left(K \stackrel{\mathrm{~L}}{\mathrm{~L}} \mathrm{~L} p_{X}^{*}(-)\right) .
$$

Consistently with the analogy to K3 surfaces we have: Theorem:([1]) The number of isomorphism classes of FM partners $\# \mathrm{FM}(X)$ of X is finite.

Question

Are there examples of cubic fourfolds with a prescribed number of non isomorphic FM partners?

Answer: Consider general cubic fourfolds of discriminant d with a Hodge-associated (twisted) K3 surface $(S, \alpha) \Leftrightarrow$ numerical condition on the discriminant.

Untwisted case (Hassett)

$$
\begin{equation*}
4 \nmid d, 9 \nmid d, p \nmid d \forall \text { prime } p \equiv 2(\bmod 3) \tag{*}
\end{equation*}
$$

Twisted case (Huybrechts)
$n_{i} \equiv 0(\bmod 2) \forall$ prime $p_{i} \equiv 2(\bmod 3)$ in $2 d=\Pi p_{i}^{n_{i}}\left(*^{\prime}\right)$

Theorem 1

Let $d>6, d \equiv 0,2 \bmod (6)$ satisfying $\left(*^{\prime}\right)$ and let h be the number of distinct odd primes in prime factorization of $d / \operatorname{ord}(\alpha)$. Let X be a general element in \mathcal{C}_{d}.
Untwisted case: If d satisfies ($*$), then

$$
\# \mathrm{FM}(X)=\left\{\begin{array}{l}
2^{h-1}, \text { if } d \equiv 2(\bmod 6) \text { and } h>1 \\
2^{h-2}, \text { if } d \equiv 0(\bmod 6) \text { and } h>2 \\
1, \text { otherwise }
\end{array}\right.
$$

Twisted case: We get a lower bound to \#FM (X), depending on h and $\varphi(\alpha)$.

Tool: Mukai lattice for \mathcal{A}_{X}
$\tilde{H}\left(\mathcal{A}_{X}, \mathbb{Z}\right)=\left\{\kappa \in K_{\text {top }}(X): \chi\left(\left[\mathcal{O}_{X}(i)\right], \kappa\right)=0, \forall i=0,1,2\right\}$
Theorem:([1]) For general $X \in \mathcal{C}_{d}, \mathcal{A}_{X} \xrightarrow{\sim} \mathcal{A}_{X^{\prime}}$ of FM type iff their Mukai lattices are Hodge isometric.
Gushel-Mukai fourfolds

A GM fourfold is a smooth dimensionally transverse intersection

$$
X=\mathrm{CG}\left(2, V_{5}\right) \cap \mathbb{P}(W) \cap Q
$$

where Q is a quadric hypersurface in $\mathbb{P}(W) \cong \mathbb{P}^{8} \subset$ $\mathbb{P}\left(\wedge^{2} V_{5} \oplus \mathbb{C}\right)$
Semiorthogonal decomposition

$$
\mathrm{D}^{\mathrm{b}}(X)=\left\langle\mathcal{A}_{X}, \mathcal{O}_{X}, \mathcal{U}_{X}^{*}, \mathcal{O}_{X}(1), \mathcal{U}_{X}^{*}(1)\right\rangle
$$

where \mathcal{A}_{X} is a K3 category (Kuznetsov, Perry).
Lagrangian data: X defines a triple $\left(V_{6}, V_{5}, A\right)$, where $A \subset \wedge^{3} V_{6}$ is Lagrangian without decomposable vectors. Viceversa, it is possible to recover the GM fourfold from such a data (Debarre, Kuznetsov).
\rightsquigarrow EPW stratification in $Y_{A}^{>3} \subset Y_{A}^{>2} \subset Y_{A}^{>1} \subset \mathbb{P}\left(V_{6}\right)$ and EPW sextic hypersurface $Y_{A}:=Y_{A}^{\geq 1}$.

Associated double EPW sextic
We consider the double cover of the EPW sextic Y_{A} branched over $Y_{A}^{>2}$ associated to a GM fourfold X. Assume that \tilde{Y}_{A} is smooth $\Leftrightarrow Y_{A}^{>3}=\emptyset$.

Aim

To study \tilde{Y}_{A} as a moduli space of (twisted) stable sheaves on a K3 surface.

Facts (Debarre, Iliev, Manivel):

- Period points of special GM fourfolds form divisors in the period domain identified by the discriminant d.
- Hodge-associated K3 surface $\Leftrightarrow 8 \nmid d$ and the only odd primes which divide d are $\equiv 1(\bmod 4)$
(\dagger)
Assume that X has discriminant d.

Theorem 2 (untwisted case)

If d satisfies (\dagger), then \tilde{Y}_{A} is birational to a moduli space of stable sheaves on a K3 surface S. The converse holds for general X and for non general X whose period point is in a divisor with discriminant $d \equiv 2$ or $4(\bmod 8)$.

Remark: There are examples of GM fourfolds with $\operatorname{rank}\left(H^{2,2}(X, \mathbb{Z})\right)=4$ and period point only in divisors with discriminants $\equiv 0(\bmod 8)$, having \tilde{Y}_{A} birational to a moduli space of sheaves on a K3 surface, but which cannot have a Hodge-associated K3 surface.

Steps:

- Mukai lattice $\tilde{H}\left(\mathcal{A}_{X}, \mathbb{Z}\right)$

$$
\left\langle\lambda_{1}, \lambda_{2}\right\rangle^{\perp} \cong H^{4}(X, \mathbb{Z})_{\mathrm{van}}
$$

- Relate condition (\dagger) with existence of a primitively embedded $U=\left(\mathbb{Z}^{2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$ in the algebraic part of $\tilde{H}\left(\mathcal{A}_{X}, \mathbb{Z}\right)$.
There is a primitive embedding of $H^{2}\left(\tilde{Y}_{A}, \mathbb{Z}\right)$ in $\tilde{H}\left(\mathcal{A}_{X}, \mathbb{Z}\right) \rightsquigarrow$ we apply Addington's result.

Theorem 2 (twisted case)

There is a Hodge isometry $\tilde{H}\left(\mathcal{A}_{X}, \mathbb{Z}\right) \cong \tilde{H}(S, \alpha, \mathbb{Z})$ where (S, α) is a twisted K3 surface iff
$d=\Pi_{i} p_{i}^{n_{i}}$ with $n_{i} \equiv 0(\bmod 2)$ for $p_{i} \equiv 3(\bmod 4)\left(\dagger^{\prime}\right)$
\tilde{Y}_{A} is birational to a moduli space of twisted stable sheaves on a K3 surface S if and only if d satisfies $\left(\dagger^{\prime}\right)$.

Theorem 3

\tilde{Y}_{A} is birational to the Hilbert scheme $S^{[2]}$ on a K3 surface S iff d satisfies

$$
a^{2} d=2 n^{2}+2 \text { for } a, n \in \mathbb{Z}
$$

Stability conditions on \mathcal{A}_{X} (joint with X. Zhao, work in progress)

Property:([2]) If X is an ordinary GM fourfold, then the restriction to a hyperplane $\mathbb{P}\left(V_{4}\right) \subset \mathbb{P}\left(V_{5}\right)$ of the first conic fibration ρ is flat and smooth.
$\tilde{X}=\mathrm{Bl}_{E}(X), \quad E=\mathrm{G}\left(2, V_{4}\right) \cap Q$.
Idea: Use $\tilde{\rho}$ to induce stability conditions on \mathcal{A}_{X} from $\mathrm{D}^{\mathrm{b}}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right), \mathcal{B}_{0}=$ even part of associated Clifford algebra.

References

[1] D. Huybrechts, The K3 category of a cubic fourfold, Compositio Mathematica 153 (2017), 586-620.
[2] M. Ornaghi, L. Pertusi, Voevodsky's conjecture for cubic fourfolds and Gushel-Mukai fourfolds via noncommutative K3 surfaces, arXiv:1703.10844.
[3] L. Pertusi, Fourier-Mukai partners for general special cubic fourfolds, arXiv:1611.06687
[4] L. Pertusi, On the double EPW sextic associated to a Gushel-Mukai fourfold, arXiv:1709.02144.

